Weak Lumpability of Finite Markov Chains and Positive Invariance of Cones

نویسندگان

  • JAMES LEDOUX
  • James Ledoux
چکیده

We consider weak lumpability of general nite homogeneous Markov chains evolving in discrete time, that is when a lumped Markov chain with respect to a partition of the initial state space is also a homogeneous Markov chain. We show that weak lumpabilityis equivalent to the existence of a decomposable polyhedral cone which is positively invariant by the transition probability matrix of the original chain. It allows us, in a uniied way, to derive new results on lumpability of reducible Markov chains and to obtain spectral properties associated with lumpability. Agr egation faible de cha^ nes de Markov nies et invariance positive de c^ ones R esum e : Nous nous int eressons a la propri et e d'agr egation faible de cha^ nes de Markov nies evoluant en temps discret, c'est a dire quand une cha^ ne de Markov, agr eg ee selon une partition de l'espace d' etat initial, est encore markovienne homog ene. Nous montrons que cette propri et e est equivalente a l'existence d'un c^ one polyh edrique d ecomposable qui est invariant par la matrice des probabilit es de transition de la cha^ ne originale. Cela nous permet, d'une mani ere unif ee, de d eriver de nouveaux r esultats sur l'agr egation de cha^ nes de Markov r eductibles et d'obtenir des propri et es spectrales associ ees a l'agr egation. Weak lumpability of nite Markov chains and positive invariance of cones 3 1 Introduction

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric invariant in weak lumpability of finite Markov chains

We consider weak lumpability of finite homogeneous Markov chains, that is when a lumped Markov chain with respect to a partition of the initial state space is also a homogeneous Markov chain. We show that weak lumpability is equivalent to the existence of a direct sum of polyhedral cones which is is positively invariant by the transition probability matrix of the original chain. It allows us, i...

متن کامل

On Weak Lumpability of Denumerable Markov Chains

We consider weak lumpability of denumerable discrete or continuous time Markov chains. Firstly, we are concerned with irreducible recurrent positive and R-positive Markov chains evolving in discrete time. We study the properties of the set of all initial distributions of the starting chain leading to an aggregated homogeneous Markov chain with respect to a partition of the state space. In parti...

متن کامل

Exact and Ordinary Lumpability in Finite Markov Chainsy

Exact and ordinary lumpability in nite Markov chains is considered. Both concepts naturally deene an aggregation of the Markov chain yielding an aggregated chain that allows the exact determination of several stationary and transient results for the original chain. We show which quantities can be determined without an error from the aggregated process and describe methods to calculate bounds on...

متن کامل

A necessary condition for weak lumpability in finite Markov processes

Under certain conditions, the state space of a homogeneous Markov process can be partitionned to construct an aggregated markovian process. However, the verification of these conditions requires expensive computations. In this note, we expose a necessary condition for having a markovian aggregated process. This condition is based on properties of the eigenvalues of certain submatrices of the tr...

متن کامل

Markovian bounds on functions of finite Markov chains

In this paper, we obtain Markovian bounds on a function of a homogeneous discrete time Markov chain. For deriving such bounds, we use well known results on stochastic majorization of Markov chains and the Rogers-Pitman’s lumpability criterion. The proposed method of comparison between functions of Markov chains is not equivalent to generalized coupling method of Markov chains although we obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996